Source code for mpinterfaces.mat2d.stability.analysis

from __future__ import print_function, division, unicode_literals

import operator
import os

import matplotlib as mpl
mpl.use('Agg')
import matplotlib.pyplot as plt

from pymatgen.core.structure import Structure
from pymatgen.entries.computed_entries import ComputedEntry
from pymatgen.io.vasp.outputs import Vasprun
from pymatgen.phasediagram.analyzer import PDAnalyzer
from pymatgen.phasediagram.maker import PhaseDiagram

from mpinterfaces.utils import is_converged
from mpinterfaces.mat2d import MPR

__author__ = "Michael Ashton"
__copyright__ = "Copyright 2017, Henniggroup"
__maintainer__ = "Michael Ashton"
__email__ = "ashtonmv@gmail.com"
__status__ = "Production"
__date__ = "March 3, 2017"


[docs]def get_competing_phases(): """ Collect the species to which the material might decompose to. Returns: A list of phases as tuples formatted as [(formula_1, Materials_Project_ID_1), (formula_2, Materials_Project_ID_2), ...] """ composition = Structure.from_file('POSCAR').composition try: energy = Vasprun('vasprun.xml').final_energy except: energy = 100 # The function can work without a vasprun.xml entries = MPR.get_entries_in_chemsys([elt.symbol for elt in composition]) my_entry = ComputedEntry(composition, energy) entries.append(my_entry) pda = PDAnalyzer(PhaseDiagram(entries)) decomp = pda.get_decomp_and_e_above_hull(my_entry, allow_negative=True) competing_phases = [(entry.composition.reduced_formula, entry.entry_id) for entry in decomp[0]] return competing_phases
[docs]def get_hull_distance(competing_phase_directory='../competing_phases'): """ Calculate the material's distance to the thermodynamic hull, based on species in the Materials Project database. Args: competing_phase_directory (str): absolute or relative path to the location where your competing phases have been relaxed. The default expectation is that they are stored in a directory named 'competing_phases' at the same level as your material's relaxation directory. Returns: float: distance (eV/atom) between the material and the hull. """ finished_competitors = {} original_directory = os.getcwd() # Determine which competing phases have been relaxed in the current # framework and store them in a dictionary ({formula: entry}). if os.path.isdir(competing_phase_directory): os.chdir(competing_phase_directory) for comp_dir in [dir for dir in os.listdir(os.getcwd()) if os.path.isdir(dir) and is_converged(dir)]: vasprun = Vasprun('{}/vasprun.xml'.format(comp_dir)) composition = vasprun.final_structure.composition energy = vasprun.final_energy finished_competitors[comp_dir] = ComputedEntry(composition, energy) os.chdir(original_directory) else: raise ValueError('Competing phase directory does not exist.') composition = Structure.from_file('POSCAR').composition try: energy = Vasprun('vasprun.xml').final_energy except: raise ValueError('This directory does not have a converged vasprun.xml') my_entry = ComputedEntry(composition, energy) # 2D material entries = MPR.get_entries_in_chemsys([elt.symbol for elt in composition]) # If the energies of competing phases have been calculated in # the current framework, put them in the phase diagram instead # of the MP energies. for i in range(len(entries)): formula = entries[i].composition.reduced_formula if formula in finished_competitors: entries[i] = finished_competitors[formula] else: entries[i] = ComputedEntry(entries[i].composition, 100) entries.append(my_entry) # 2D material pda = PDAnalyzer(PhaseDiagram(entries)) decomp = pda.get_decomp_and_e_above_hull(my_entry, allow_negative=True) return decomp[1]
[docs]def plot_hull_distances(hull_distances, fmt='pdf'): """ Create a bar graph of the formation energies of several 2D materials. Args: hull_distances (dict): follow the format: {reduced_formula: hull_distance (in eV/atom)} fmt (str): matplotlib format style. Check the matplotlib docs for options. """ hsize = 12 + (len(hull_distances) - 4) / 3 ax = plt.figure(figsize=(hsize, 10)).gca() ax.set_ylim(0, 700) ax.set_xlim(0, len(hull_distances)) x_ticklabels = [] i = 0 for compound in sorted(hull_distances.items(), key=operator.itemgetter(1)): proper_formula = '' for char in compound[0]: try: proper_formula += '_{}'.format(char) except ValueError: proper_formula += char x_ticklabels.append(r'$\mathrm{%s}$' % proper_formula) hull_distance = hull_distances[compound[0]] * 1000 # Good chance of stability if hull_distance < 100: color_code = 0.5 # Decent chance of stability elif hull_distance < 200: color_code = 0.71 # Poor chance of stability else: color_code = 0.92 ax.add_patch(plt.Rectangle((i + 0.1, 0), height=hull_distance, width=0.8, linewidth=0, facecolor=plt.cm.jet(color_code))) i += 1 ax.set_xticks([x + 0.5 for x in range(len(hull_distances))]) ax.set_xticklabels(x_ticklabels, family='serif', size=20, rotation=60) ax.set_yticklabels(ax.get_yticks(), family='serif', size=20) ax.set_ylabel(r'$\mathrm{E_F\/(meV/atom)}$', size=40) plt.savefig('stability_plot.{}'.format(fmt), transparent=True)