Source code for mpinterfaces.mat2d.electronic_structure.analysis

from __future__ import print_function, division, unicode_literals

import os

import matplotlib as mpl
mpl.use('Agg')
import matplotlib.pyplot as plt

import numpy as np

from pymatgen.core.structure import Structure
from pymatgen.io.vasp.outputs import Vasprun, Locpot, VolumetricData
from pymatgen.io.vasp.inputs import Incar
from pymatgen.electronic_structure.plotter import BSPlotter, BSPlotterProjected
from pymatgen.electronic_structure.core import Spin

from mpinterfaces.utils import is_converged

__author__ = "Michael Ashton"
__copyright__ = "Copyright 2017, Henniggroup"
__maintainer__ = "Michael Ashton"
__email__ = "joshgabriel92@gmail.com"
__status__ = "Production"
__date__ = "March 3, 2017"


[docs]def get_band_edges(): """ Calculate the band edge locations relative to the vacuum level for a semiconductor. Returns: edges (dict): {'up_cbm': , 'up_vbm': , 'dn_cbm': , 'dn_vbm': , 'efermi'} """ # Vacuum level energy from LOCPOT. locpot = Locpot.from_file('LOCPOT') evac = max(locpot.get_average_along_axis(2)) vasprun = Vasprun('vasprun.xml') bs = vasprun.get_band_structure() eigenvals = vasprun.eigenvalues efermi = vasprun.efermi - evac if bs.is_spin_polarized: print(eigenvals[Spin.up]) print([e[0]-evac for e in eigenvals[Spin.up][0]]) up_cbm = min( [min([e[0] for e in eigenvals[Spin.up][i] if not e[1]]) for i in range(len(eigenvals[Spin.up]))]) - evac up_vbm = max( [max([e[0] for e in eigenvals[Spin.up][i] if e[1]]) for i in range(len(eigenvals[Spin.up]))]) - evac dn_cbm = min( [min([e[0] for e in eigenvals[Spin.down][i] if not e[1]]) for i in range(len(eigenvals[Spin.down]))]) - evac dn_vbm = max( [max([e[0] for e in eigenvals[Spin.down][i] if e[1]]) for i in range(len(eigenvals[Spin.down]))]) - evac edges = {'up_cbm': up_cbm, 'up_vbm': up_vbm, 'dn_cbm': dn_cbm, 'dn_vbm': dn_vbm, 'efermi': efermi} else: cbm = bs.get_cbm()['energy'] - evac vbm = bs.get_vbm()['energy'] - evac edges = {'up_cbm': cbm, 'up_vbm': vbm, 'dn_cbm': cbm, 'dn_vbm': vbm, 'efermi': efermi} return edges
[docs]def plot_band_alignments(directories, run_type='PBE', fmt='pdf'): """ Plot CBM's and VBM's of all compounds together, relative to the band edges of H2O. Args: directories (list): list of the directory paths for materials to include in the plot. run_type (str): 'PBE' or 'HSE', so that the function knows which subdirectory to go into (pbe_bands or hse_bands). fmt (str): matplotlib format style. Check the matplotlib docs for options. """ if run_type == 'HSE': subdirectory = 'hse_bands' else: subdirectory = 'pbe_bands' band_gaps = {} for directory in directories: sub_dir = os.path.join(directory, subdirectory) if is_converged(sub_dir): os.chdir(sub_dir) band_structure = Vasprun('vasprun.xml').get_band_structure() band_gap = band_structure.get_band_gap() # Vacuum level energy from LOCPOT. locpot = Locpot.from_file('LOCPOT') evac = max(locpot.get_average_along_axis(2)) if not band_structure.is_metal(): is_direct = band_gap['direct'] cbm = band_structure.get_cbm() vbm = band_structure.get_vbm() else: cbm = None vbm = None is_direct = False band_gaps[directory] = {'CBM': cbm, 'VBM': vbm, 'Direct': is_direct, 'Metal': band_structure.is_metal(), 'E_vac': evac} os.chdir('../../') ax = plt.figure(figsize=(16, 10)).gca() x_max = len(band_gaps) * 1.315 ax.set_xlim(0, x_max) # Rectangle representing band edges of water. ax.add_patch(plt.Rectangle((0, -5.67), height=1.23, width=len(band_gaps), facecolor='#00cc99', linewidth=0)) ax.text(len(band_gaps) * 1.01, -4.44, r'$\mathrm{H+/H_2}$', size=20, verticalalignment='center') ax.text(len(band_gaps) * 1.01, -5.67, r'$\mathrm{O_2/H_2O}$', size=20, verticalalignment='center') x_ticklabels = [] y_min = -8 i = 0 # Nothing but lies. are_directs, are_indirects, are_metals = False, False, False for compound in [cpd for cpd in directories if cpd in band_gaps]: x_ticklabels.append(compound) # Plot all energies relative to their vacuum level. evac = band_gaps[compound]['E_vac'] if band_gaps[compound]['Metal']: cbm = -8 vbm = -2 else: cbm = band_gaps[compound]['CBM']['energy'] - evac vbm = band_gaps[compound]['VBM']['energy'] - evac # Add a box around direct gap compounds to distinguish them. if band_gaps[compound]['Direct']: are_directs = True linewidth = 5 elif not band_gaps[compound]['Metal']: are_indirects = True linewidth = 0 # Metals are grey. if band_gaps[compound]['Metal']: are_metals = True linewidth = 0 color_code = '#404040' else: color_code = '#002b80' # CBM ax.add_patch(plt.Rectangle((i, cbm), height=-cbm, width=0.8, facecolor=color_code, linewidth=linewidth, edgecolor="#e68a00")) # VBM ax.add_patch(plt.Rectangle((i, y_min), height=(vbm - y_min), width=0.8, facecolor=color_code, linewidth=linewidth, edgecolor="#e68a00")) i += 1 ax.set_ylim(y_min, 0) # Set tick labels ax.set_xticks([n + 0.4 for n in range(i)]) ax.set_xticklabels(x_ticklabels, family='serif', size=20, rotation=60) ax.set_yticklabels(ax.get_yticks(), family='serif', size=20) # Add a legend height = y_min if are_directs: ax.add_patch(plt.Rectangle((i*1.165, height), width=i*0.15, height=(-y_min*0.1), facecolor='#002b80', edgecolor='#e68a00', linewidth=5)) ax.text(i*1.24, height - y_min * 0.05, 'Direct', family='serif', color='w', size=20, horizontalalignment='center', verticalalignment='center') height -= y_min * 0.15 if are_indirects: ax.add_patch(plt.Rectangle((i*1.165, height), width=i*0.15, height=(-y_min*0.1), facecolor='#002b80', linewidth=0)) ax.text(i*1.24, height - y_min * 0.05, 'Indirect', family='serif', size=20, color='w', horizontalalignment='center', verticalalignment='center') height -= y_min * 0.15 if are_metals: ax.add_patch(plt.Rectangle((i*1.165, height), width=i*0.15, height=(-y_min*0.1), facecolor='#404040', linewidth=0)) ax.text(i*1.24, height - y_min * 0.05, 'Metal', family='serif', size=20, color='w', horizontalalignment='center', verticalalignment='center') # Who needs axes? ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.spines['bottom'].set_visible(False) ax.spines['left'].set_visible(False) ax.yaxis.set_ticks_position('left') ax.xaxis.set_ticks_position('bottom') ax.set_ylabel('eV', family='serif', size=24) if fmt == "None": return ax else: plt.savefig('band_alignments.{}'.format(fmt), transparent=True) plt.close()
[docs]def plot_local_potential(axis=2, ylim=(-20, 0), fmt='pdf'): """ Plot data from the LOCPOT file along any of the 3 primary axes. Useful for determining surface dipole moments and electric potentials on the interior of the material. Args: axis (int): 0 = x, 1 = y, 2 = z ylim (tuple): minimum and maximum potentials for the plot's y-axis. fmt (str): matplotlib format style. Check the matplotlib docs for options. """ ax = plt.figure(figsize=(16, 10)).gca() locpot = Locpot.from_file('LOCPOT') structure = Structure.from_file('CONTCAR') vd = VolumetricData(structure, locpot.data) abs_potentials = vd.get_average_along_axis(axis) vacuum_level = max(abs_potentials) vasprun = Vasprun('vasprun.xml') bs = vasprun.get_band_structure() if not bs.is_metal(): cbm = bs.get_cbm()['energy'] - vacuum_level vbm = bs.get_vbm()['energy'] - vacuum_level potentials = [potential - vacuum_level for potential in abs_potentials] axis_length = structure.lattice._lengths[axis] positions = np.arange(0, axis_length, axis_length / len(potentials)) ax.plot(positions, potentials, linewidth=2, color='k') ax.set_xlim(0, axis_length) ax.set_ylim(ylim[0], ylim[1]) ax.set_xticklabels( [r'$\mathrm{%s}$' % tick for tick in ax.get_xticks()], size=20) ax.set_yticklabels( [r'$\mathrm{%s}$' % tick for tick in ax.get_yticks()], size=20) ax.set_xlabel(r'$\mathrm{\AA}$', size=24) ax.set_ylabel(r'$\mathrm{V\/(eV)}$', size=24) if not bs.is_metal(): ax.text(ax.get_xlim()[1], cbm, r'$\mathrm{CBM}$', horizontalalignment='right', verticalalignment='bottom', size=20) ax.text(ax.get_xlim()[1], vbm, r'$\mathrm{VBM}$', horizontalalignment='right', verticalalignment='top', size=20) ax.fill_between(ax.get_xlim(), cbm, ax.get_ylim()[1], facecolor=plt.cm.jet(0.3), zorder=0, linewidth=0) ax.fill_between(ax.get_xlim(), ax.get_ylim()[0], vbm, facecolor=plt.cm.jet(0.7), zorder=0, linewidth=0) if fmt == "None": return ax else: plt.savefig('locpot.{}'.format(fmt)) plt.close()
[docs]def plot_band_structure(ylim=(-5, 5), draw_fermi=False, fmt='pdf'): """ Plot a standard band structure with no projections. Args: ylim (tuple): minimum and maximum potentials for the plot's y-axis. draw_fermi (bool): whether or not to draw a dashed line at E_F. fmt (str): matplotlib format style. Check the matplotlib docs for options. """ vasprun = Vasprun('vasprun.xml') efermi = vasprun.efermi bsp = BSPlotter(vasprun.get_band_structure('KPOINTS', line_mode=True, efermi=efermi)) if fmt == "None": return bsp.bs_plot_data() else: plot = bsp.get_plot(ylim=ylim) fig = plot.gcf() ax = fig.gca() ax.set_xticklabels([r'$\mathrm{%s}$' % t for t in ax.get_xticklabels()]) ax.set_yticklabels([r'$\mathrm{%s}$' % t for t in ax.get_yticklabels()]) if draw_fermi: ax.plot([ax.get_xlim()[0], ax.get_xlim()[1]], [0, 0], 'k--') plt.savefig('band_structure.{}'.format(fmt), transparent=True) plt.close()
[docs]def plot_color_projected_bands(ylim=(-5, 5), fmt='pdf'): """ Plot a single band structure where the color of the band indicates the elemental character of the eigenvalue. Args: ylim (tuple): minimum and maximum energies for the plot's y-axis. fmt (str): matplotlib format style. Check the matplotlib docs for options. """ vasprun = Vasprun('vasprun.xml', parse_projected_eigen=True) bs = vasprun.get_band_structure('KPOINTS', line_mode=True) bspp = BSPlotterProjected(bs) ax = bspp.get_elt_projected_plots_color().gcf().gca() ax.set_xticklabels([r'$\mathrm{%s}$' % t for t in ax.get_xticklabels()]) ax.set_yticklabels([r'$\mathrm{%s}$' % t for t in ax.get_yticklabels()]) ax.set_ylim(ylim) if fmt == "None": return ax else: plt.savefig('color_projected_bands.{}'.format(fmt)) plt.close()
[docs]def plot_elt_projected_bands(ylim=(-5, 5), fmt='pdf'): """ Plot separate band structures for each element where the size of the markers indicates the elemental character of the eigenvalue. Args: ylim (tuple): minimum and maximum energies for the plot's y-axis. fmt (str): matplotlib format style. Check the matplotlib docs for options. """ vasprun = Vasprun('vasprun.xml', parse_projected_eigen=True) bs = vasprun.get_band_structure('KPOINTS', line_mode=True) bspp = BSPlotterProjected(bs) ax = bspp.get_elt_projected_plots(ylim=ylim).gcf().gca() ax.set_xticklabels([r'$\mathrm{%s}$' % t for t in ax.get_xticklabels()]) ax.set_yticklabels([r'$\mathrm{%s}$' % t for t in ax.get_yticklabels()]) if fmt == "None": return ax else: plt.savefig('elt_projected_bands.{}'.format(fmt)) plt.close()
[docs]def plot_orb_projected_bands(orbitals, fmt='pdf', ylim=(-5, 5)): """ Plot a separate band structure for each orbital of each element in orbitals. Args: orbitals (dict): dictionary of the form {element: [orbitals]}, e.g. {'Mo': ['s', 'p', 'd'], 'S': ['p']} ylim (tuple): minimum and maximum energies for the plot's y-axis. fmt (str): matplotlib format style. Check the matplotlib docs for options. """ vasprun = Vasprun('vasprun.xml', parse_projected_eigen=True) bs = vasprun.get_band_structure('KPOINTS', line_mode=True) bspp = BSPlotterProjected(bs) ax = bspp.get_projected_plots_dots(orbitals, ylim=ylim).gcf().gca() ax.set_xticklabels([r'$\mathrm{%s}$' % t for t in ax.get_xticklabels()]) ax.set_yticklabels([r'$\mathrm{%s}$' % t for t in ax.get_yticklabels()]) if fmt == "None": return ax else: plt.savefig('orb_projected_bands.{}'.format(fmt)) plt.close()
[docs]def get_effective_mass(): """ This function is in a beta stage, and its results are not guaranteed to be useful. Finds effective masses from a band structure, using parabolic fitting to determine the band curvature at the CBM for electrons and at the VBM for holes. This curvature enters the equation m* = (hbar)**2 / (d^2E/dk^2). To consider anisotropy, the k-space directions to the left and right of the CBM/VBM in the band diagram are returned separately. *NOTE* Only works for semiconductors and linemode calculations (non- spin polarized). >30 k-points per string recommended to obtain reliable curvatures. *NOTE* The parabolic fit can be quite sensitive to the number of k-points fit to, so it might be worthwhile adjusting N_KPTS to obtain some sense of the error bar. TODO: Warn user if CBM/VBM is at the edge of the diagram, and which direction (either left or right) was not actually fit to. Until fixed, this (most likely) explains any negative masses returned. Returns: Dictionary of the form {'electron': {'left': e_m_eff_l, 'right': e_m_eff_r}, 'hole': {'left': h_m_eff_l, 'right': h_m_eff_r}} where 'left' and 'right' indicate the reciprocal directions to the left and right of the extremum in the band structure. """ H_BAR = 6.582119514e-16 # eV*s M_0 = 9.10938356e-31 # kg N_KPTS = 6 # Number of k-points included in the parabola. spin_up = Spin(1) band_structure = Vasprun('vasprun.xml').get_band_structure() # Locations of CBM and VBM in band_structure.bands cbm_band_index = band_structure.get_cbm()['band_index'][spin_up][0] cbm_kpoint_index = band_structure.get_cbm()['kpoint_index'][0] vbm_band_index = band_structure.get_vbm()['band_index'][spin_up][0] vbm_kpoint_index = band_structure.get_vbm()['kpoint_index'][0] k = {'electron': {'left': [], 'right': []}, 'hole': {'left': [], 'right': []}} E = {'electron': {'left': [], 'right': []}, 'hole': {'left': [], 'right': []}} e_ref_coords = band_structure.kpoints[cbm_kpoint_index]._ccoords h_ref_coords = band_structure.kpoints[vbm_kpoint_index]._ccoords for n in range(-N_KPTS, 1): e_coords = band_structure.kpoints[cbm_kpoint_index + n]._ccoords h_coords = band_structure.kpoints[vbm_kpoint_index + n]._ccoords k['electron']['left'].append( ((e_coords[0] - e_ref_coords[0])**2 + (e_coords[1] - e_ref_coords[1])**2 + (e_coords[2] - e_ref_coords[2])**2)**0.5 ) k['hole']['left'].append( ((h_coords[0] - h_ref_coords[0])**2 + (h_coords[1] - h_ref_coords[1])**2 + (h_coords[2] - h_ref_coords[2])**2)**0.5 ) e_energy = band_structure.bands[ spin_up][cbm_band_index][cbm_kpoint_index + n] h_energy = band_structure.bands[ spin_up][vbm_band_index][vbm_kpoint_index + n] E['electron']['left'].append(e_energy) E['hole']['left'].append(h_energy) for n in range(1, 1 + N_KPTS): e_coords = band_structure.kpoints[cbm_kpoint_index + n]._ccoords h_coords = band_structure.kpoints[vbm_kpoint_index + n]._ccoords k['electron']['right'].append( ((e_coords[0] - e_ref_coords[0])**2 + (e_coords[1] - e_ref_coords[1])**2 + (e_coords[2] - e_ref_coords[2])**2)**0.5 ) k['hole']['right'].append( ((h_coords[0] - h_ref_coords[0])**2 + (h_coords[1] - h_ref_coords[1])**2 + (h_coords[2] - h_ref_coords[2])**2)**0.5 ) e_energy = band_structure.bands[ spin_up][cbm_band_index][cbm_kpoint_index + n] h_energy = band_structure.bands[ spin_up][vbm_band_index][vbm_kpoint_index + n] E['electron']['right'].append(e_energy) E['hole']['right'].append(h_energy) # 2nd order fits e_l_fit = np.poly1d( np.polyfit(k['electron']['left'], E['electron']['left'], 2)) e_r_fit = np.poly1d( np.polyfit(k['electron']['right'], E['electron']['right'], 2)) h_l_fit = np.poly1d( np.polyfit(k['hole']['left'], E['hole']['left'], 2)) h_r_fit = np.poly1d( np.polyfit(k['hole']['right'], E['hole']['right'], 2)) # Curvatures e_l_curvature = e_l_fit.deriv().deriv()[0] e_r_curvature = e_r_fit.deriv().deriv()[0] h_l_curvature = h_l_fit.deriv().deriv()[0] h_r_curvature = h_r_fit.deriv().deriv()[0] # Unit conversion e_m_eff_l = 10 * ((H_BAR ** 2) / e_l_curvature) / M_0 e_m_eff_r = 10 * ((H_BAR ** 2) / e_r_curvature) / M_0 h_m_eff_l = -10 * ((H_BAR ** 2) / h_l_curvature) / M_0 h_m_eff_r = -10 * ((H_BAR ** 2) / h_r_curvature) / M_0 return {'electron': {'left': e_m_eff_l, 'right': e_m_eff_r}, 'hole': {'left': h_m_eff_l, 'right': h_m_eff_r}}
[docs]def plot_density_of_states(xlim=(-10, 5), ylim=(-1.5, 1.5), fmt='pdf'): """ Plots the density of states from the DOSCAR in the cwd. Plots spin up in red, down in green, and the sum in black. Efermi = 0. Args: xlim (tuple): minimum and maximum energies for the plot's x-axis. ylim (tuple): minimum and maximum for the plot's y-axis. fmt (str): matplotlib format style. Check the matplotlib docs for options. """ efermi = Vasprun('vasprun.xml').efermi dos_lines = open ('DOSCAR').readlines() x, up, down = [], [], [] nedos = Incar.from_file('INCAR').as_dict()['NEDOS'] - 1 for line in dos_lines[6:6+nedos]: split_line = line.split() x.append(float(split_line[0]) - efermi) up.append(float(split_line[1])) down.append(-float(split_line[2])) x, up, down = np.array(x), np.array(up), np.array(down) sum = up + down ax = plt.figure().gca() ax.set_xlim(xlim[0], xlim[1]) ax.set_ylim(ylim[0], ylim[1]) ax.set_xlabel(r'$\mathrm{E\/(eV)}$') ax.set_ylabel(r'$\mathrm{Density\/of\/States$') ax.set_xticklabels([r'$\mathrm{%s}$' % t for t in ax.get_xticklabels()]) ax.set_yticklabels([r'$\mathrm{%s}$' % t for t in ax.get_yticklabels()]) ax.plot(x, up, color='red' ) ax.plot(x, down, color='green') ax.plot(x, sum, color='black' ) if fmt is not None: plt.savefig('density_of_states.{}'.format(fmt)) else: return ax plt.close()
[docs]def get_fermi_velocities(): """ Calculates the fermi velocity of each band that crosses the fermi level, according to v_F = dE/(h_bar*dk). Returns: fermi_velocities (list). The absolute values of the adjusted slopes of each band, in Angstroms/s. """ vr = Vasprun('vasprun.xml') # eigenvalues = vr.eigenvalues bs = vr.get_band_structure() bands = bs.bands kpoints = bs.kpoints efermi = bs.efermi h_bar = 6.582e-16 # eV*s fermi_bands = [] for spin in bands: for i in range(len(bands[spin])): if max(bands[spin][i]) > efermi > min(bands[spin][i]): fermi_bands.append(bands[spin][i]) fermi_velocities = [] for band in fermi_bands: for i in range(len(band)-1): if (band[i] < efermi < band[i+1]) or (band[i] > efermi > band[i+1]): dk = np.sqrt((kpoints[i+1].cart_coords[0] - kpoints[i].cart_coords[0])**2 + (kpoints[i+1].cart_coords[1] - kpoints[i].cart_coords[1])**2) v_f = abs((band[i+1] - band[i]) / (h_bar * dk)) fermi_velocities.append(v_f) return fermi_velocities # Values are in Angst./s
[docs]def find_dirac_nodes(): """ Look for band crossings near (within `tol` eV) the Fermi level. Returns: boolean. Whether or not a band crossing occurs at or near the fermi level. """ vasprun = Vasprun('vasprun.xml') dirac = False if vasprun.get_band_structure().get_band_gap()['energy'] < 0.1: efermi = vasprun.efermi bsp = BSPlotter(vasprun.get_band_structure('KPOINTS', line_mode=True, efermi=efermi)) bands = [] data = bsp.bs_plot_data(zero_to_efermi=True) for d in range(len(data['distances'])): for i in range(bsp._nb_bands): x = data['distances'][d], y = [data['energy'][d][str(Spin.up)][i][j] for j in range(len(data['distances'][d]))] band = [x, y] bands.append(band) considered = [] for i in range(len(bands)): for j in range(len(bands)): if i != j and (j, i) not in considered: considered.append((j, i)) for k in range(len(bands[i][0])): if ((-0.1 < bands[i][1][k] < 0.1) and (-0.1 < bands[i][1][k] - bands[j][1][k] < 0.1)): dirac = True return dirac
[docs]def plot_spin_texture(inner_index, outer_index, center=(0, 0), fmt='pdf'): """ Create six plots- one for the spin texture in x, y, and z in each of two bands: an inner band and an outer band. For Rashba spin-splitting, these two bands should be the two that have split. Args: inner_index (int): indices of the two spin-split bands. outer_index (int): indices of the two spin-split bands. center (tuple): coordinates of the center of the splitting (where the bands cross). Defaults to Gamma. fmt: matplotlib format style. Check the matplotlib docs for options. """ procar_lines = open("PROCAR").readlines() data = procar_lines[1].split() n_kpts = int(data[3]) n_bands = int(data[7]) n_ions = int(data[11]) # These numbers, along with almost everything else in this # function, are magical. Don't touch them. band_step = (n_ions + 1) * 4 + 4 k_step = n_bands * band_step + 3 kpoints = [] spin_textures = {'inner': {'x': [], 'y': [], 'z': []}, 'outer': {'x': [], 'y': [], 'z': []}} for n in range(n_kpts): for var in ['x', 'y', 'z']: spin_textures['inner'][var].append(0) spin_textures['outer'][var].append(0) i = 3 j = 0 while i < len(procar_lines): kpoints.append([float(procar_lines[i][18:29]) - center[0], float(procar_lines[i][29:40]) - center[1]]) spin_textures['inner']['x'][j] += float( procar_lines[i+(4+(n_ions+1)*2)+inner_index*band_step].split()[-1]) spin_textures['inner']['y'][j] += float( procar_lines[i+(4+(n_ions+1)*3)+inner_index*band_step].split()[-1]) spin_textures['inner']['z'][j] += float( procar_lines[i+(4+(n_ions+1)*4)+inner_index*band_step].split()[-1]) spin_textures['outer']['x'][j] += float( procar_lines[i+(4+(n_ions+1)*2)+outer_index*band_step].split()[-1]) spin_textures['outer']['y'][j] += float( procar_lines[i+(4+(n_ions+1)*3)+outer_index*band_step].split()[-1]) spin_textures['outer']['z'][j] += float( procar_lines[i+(4+(n_ions+1)*4)+outer_index*band_step].split()[-1]) i += k_step j += 1 for branch in spin_textures: for vector in spin_textures[branch]: print('plotting {}_{}.{}'.format(branch, vector, fmt)) ax = plt.subplot(111, projection='polar') raw = [spin_textures[branch][vector][k] for k in range(len(kpoints))] minimum = min(raw) maximum = max(raw) - minimum r_max = max([np.sqrt(kpt[0]**2 + kpt[1]**2) for kpt in kpoints]) for l in range(len(kpoints)): if kpoints[l][0] == 0 and kpoints[l][1] > 0: theta = np.pi / 2.0 elif kpoints[l][0] == 0: theta = 3.0 * np.pi / 2.0 elif kpoints[l][0] < 0: theta = np.pi + np.arctan(kpoints[l][1] / kpoints[l][0]) else: theta = np.arctan(kpoints[l][1] / kpoints[l][0]) r = np.sqrt(kpoints[l][0]**2 + kpoints[l][1]**2) if r == 0: w = 0 else: w = r_max*0.07/r ax.add_patch( plt.Rectangle( (theta, r), width=w, height=r_max*0.07, color=plt.cm.rainbow( (spin_textures[branch][vector][l]-minimum)/maximum ) ) ) ax.plot(0, 0, linewidth=0, marker='o', color='k', markersize=18) ax.set_rmax(r_max) plt.axis('off') plt.savefig('{}_{}.{}'.format(branch, vector, fmt)) plt.close()